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Abstract

One of the most celebrated problems in dyadic harmonic analysis is the pointwise
convergence of the Fejér (or (C, 1)) means of functions on unbounded Vilenkin groups. There
was no known positive result before the author’s paper appeared in 1999 (J. Approx. Theory
101(1) (1999) 1) with respect to the a.e. convergence of the one-dimensional (C, 1) means of
L7 (p>1) functions. This paper is concerned with the almost everywhere convergence of a
subsequence of the two-dimensional Fejér means of functions in Llog™ L. Namely, we prove
the a.e. relation lim, -, o 0, 57/ =/ (for the indices the condition |n — k| <o is provided,
where o.>0 is some constant).
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1. Introduction

One of the most celebrated problems in dyadic harmonic analysis is the pointwise
convergence of the Fejér (or (C, 1)) means of functions on one- and two-dimensional
unbounded Vilenkin groups.

Fine [6] proved every Walsh-Fourier series (in the Walsh case m; = 2 for all jeN)
is a.e. (C,o) summable for o>0. His argument is an adaptation of the older
trigonometric analogue due to Marcinkiewicz [17]. Schipp [21] gave a simpler proof
for the case « = 1, i.e. 0, f —f a.e. (feL'(G,)). He proved that ¢* is of weak type
(L',L"). That ¢* is bounded from H' to L' was discovered by Fujii [7]. (See also
[23].)

The theorem of Schipp are generalized to the p-series fields (m; =p for
all jeN) by Taibleson [24], and later to bounded Vilenkin systems by Pal and
Simon [19].

The methods known in the trigonometric or in the Walsh, bounded Vilenkin
case are not powerful enough. One of the main problems is that the proofs
on the bounded Vilenkin groups (or in the trigonometric case) heavily use the
fact that the L' norm of the Fejér kernels are uniformly bounded. This is not the
case if the group G,, is an unbounded one [20]. From this it follows that the
original theorem of Fejér does not hold on unbounded Vilenkin groups. Namely,
Price proved [20] that for an arbitrary sequence m (sup,m, = c0) and a€G,,
there exists a function f continuous on G,, and o, f(a) does not converge to f(a).
Moreover, he proved [20] that if 101%4%—» o0, then there exists a function f* continuous

on G, whose Fourier series are not (C,1) summable on a set S<G, which is
non-denumerable. That is, only, a.e. convergence can be stated for unbounded
Vilenkin groups. The almost everywhere convergence of the full partial sums
for L7, p>1, is known in the bounded case [15] but not in the unbounded case.
On the other hand, mean convergence of the full partial sums for L?, p>1, is
known for the unbounded case. Namely, in 1999 the author [11] proved that
if fel?(G,), where p>1, then o,f —f almost everywhere. This was the very
first ““positive” result with respect to the a.e. convergence of the Fejér means of
functions on unbounded Vilenkin groups. Later, the author of this paper gave a
partial answer for L' case. He discussed a partial sequence of the sequence of
the Fejér means. Namely, if fe€L'(G,,), then he proved (see [13]) that gy, f —f
almost everywhere.

What can be said in the case of two-dimensional functions? This is “another
story”. For double trigonometric Fourier series, Marcinkiewicz and Zygmund [16]
proved that a,,,f —f a.e. as m,n— oo provided the integral lattice points (m,n)
remain in some positive cone, that is provided ﬁ"gm/ngﬁ for some fixed
parameter f>1. It is known that the classical Fejér means are dominated by
decreasing functions whose integrals are bounded but this fails to hold for the one-
dimensional Walsh—Fejér kernels. This growth difference is exacerbated in higher
dimensions so that the trigonometric techniques are not powerful enough for the
Walsh case.
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In 1992 Méricz et al. [18] proved that g, onf —f a.e. for each e L' ([0, 1)2), when
ny,np— o0, |np —m|<a for some fixed o. Later, Gat and Weisz proved
(independently, in the same year) this for the whole sequence, that is, the theorem
of Marcinkiewicz and Zygmund with respect to the Walsh—Paley system (see [9,26]).
In 2000 Blahota and the author of this paper generalized this theorem with respect to
two-dimensional bounded Vilenkin systems [2].

If we do not provide a “‘cone restriction” for the indices in o, f that is, we discuss
the convergence of this two-dimensional Fejér means in the Pringsheim sense, then
the situation changes. In 1992 Moéricz et al. [18] proved with respect to the Walsh—
Paley system that g,/ —/ a.e. for each fe Llog™ L([0, 1)?), when min{n, k}— 0.
Later, in 2002 Weisz generalized [27] this with respect to two-dimensional bounded
Vilenkin systems. In 2000 Gat proved [12] that the theorem of Moricz et al. above
cannot be improved. Namely, let §:[0,4+00)—[0,4+00) be a measurable function
with property lim,_, ,, 3(¢) = 0. Gat proved the existence of a function /'€ L' ([0, 1)?)
such that f'e Llog™ L5(L), and ¢,/ does not converge to f a.e. as min{n, k} — co.

What can be said in the two-dimensional case with respect to unbounded Vilenkin
systems? Nothing before this paper. We prove the following theorem. Let
fe(Llog" L)(G,, x Gj). Then we have o My, A, f—f almost everywhere, where

min{n,n,} — co provided that the distance of the indices is bounded, that is, |n; —
ny| <o for some fixed constant o> 0.

It seems also to be interesting to discuss the almost everywhere convergence of
Marcinkiewicz means %27:_0] S; ;f of integrable functions on unbounded groups.
Although, this mean is defined for two-variable functions, in the view of almost
everywhere convergence there are similarities with the one-dimensional case. For the
trigonometric, Walsh—Paley, and bounded Vilenkin case see the papers of
Zhizhiasvili, Goginava, and Gat [28,14,8].

Next, we give a brief introduction to the theory of Vilenkin systems. These
orthonormal systems were introduced by Vilenkin in 1947 (see e.g. [25,1]) as follows.

Let m == (my,keN) (N ={0,1,...},P := N\{0}) be a sequence of integers each
of them not less than 2. Let Z,, denote the discrete cyclic group of order my. That is,
Zu, can be represented by the set {0,1,...,m; — 1}, with the group operation
mod my, addition. Since the groups is discrete, then every subset is open. The
normalized Haar measure on Z,, u is defined by . ({j}) =
I/my (je{0,1,...,my —1}). Let

o0
G, = X Z,.
m k=0 ny.

Then every xeG, can be represented by a sequence x = (x;,ieN), where
xi€Z,y, (ieN). The group operation on Gy, (denoted by +) is the coordinate-wise
addition (the inverse operation is denoted by —), the measure (denoted by u), which
is the normalized Haar measure, and the topology are the product measure and
topology. Consequently, G, is a compact Abelian group. If sup,,.n 7, < 0, then we
call G,,, a bounded Vilenkin group. If the generating sequence m is not bounded, then
G, is said to be an unbounded Vilenkin group. The Vilenkin group is metrizable in
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the following way:

o0
|xi — il
d(x,y) = — (x,yeGy).
()= 3 (G
The topology induced by this metric, the product topology, and the topology given
by intervals defined below, are the same. A base for the neighborhoods of G, can be
given by the intervals:

Iy(x) =G, IL(x)={y=(,ieN)eqG,:y; =x; for i<n}

for xe G,,,neP. Let 0 = (0,ieN) e G,, denote the nullelement of G,,.

Furthermore, let L7(G;,) (1<p< o) denote the usual Lebesgue spaces (||.|[, the
corresponding norms) on G,,, o7, the o-algebra generated by the sets I,(x) (xeG,,),
and E, the conditional expectation operator with respect to .7, (neN) (feL!).

The concept of the maximal Hardy space [22] H'(G,,) is defined by the maximal
function f* = sup, |E,f| (f€L'(G,)), saying that f belongs to the Hardy space
HY(G,,) if f*eL'(G,,). H'(G,) is a Banach space with the norm || f]|;n = ||f*||;-
We say that the function f' e L'(G,,) belongs to the logarithm space Llog"™ L(G,,) if
the integral

/12 10g7 2 ¢=/G £ (x)llog™ (. (x)]) du(x)

is finite. The positive logarithm log™ is defined as

log(x) if x>1
log®(x) = ’
og" (x) {0 otherwise.

Let X and Y be either H'(G,,) or L?(G,,) for some 1 <p< oo with norms ||.||, and
|.lly- We say that operator T is of type (X, Y) if there exist an absolute constant
C>0 for which ||Tf||, < C|| f]|y forall fe X. If X = Y = L”(G,,) then we often say
that T is of type (p,p) instead of type (L7, L?). T is of weak type (L', L") (or weak
type (1,1)) if there exist an absolute constant C >0 for which u(7f > 1)< C|| f]|,/4
for all 2>0 and f € L'(G,,). It is known that the operator which maps a function f to
the maximal function f* is of weak type (L',L!), and of type (L?,L?) for all
l<p< oo (see e.g. [3]).

Let My =1,M,1 =m,M, (neN) be the so-called generalized powers. Then
each natural number n can be uniquely expressed as

0
n:Zn,-M,» (l’l[E{O,l,...,Wli—l}, iEN),
i=0

where only a finite number of n;’s differ from zero. The generalized Rademacher
functions are defined as

ra(x) = exp(2n1ﬁ> (xeGp,neN, 1:=v—1).

ny
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It is known that 37 # (x) = {Sn th i” ;ioo (x€ Gy, neN). The nth Vilenkin

function is
0
n;
H 7 (neN).
J=0

The system ¢y == (,, : neN) is called a Vilenkin system. Each , is a character of G,,,
and all the characters of G, are of this form. Define the m-adic addition as

o0

k@®n="Y (kj+n (modm))M; (k,neN).
=0
Then7 l//k(JBn = l//k‘//n’ l//11()6_‘_)}) = wn(x)lpn(y)7 lpn(_x) = l/;,,(X), |l//n| =1 (k7nEN7
x,yeGp).

Define the Fourier coefficients, the partial sums of the Fourier series, the Dirichlet
kernels, the Fejér means, and the Fejér kernels with respect to the Vilenkin system i/
as follows:

we= | i

n—1
Suf = ; .f(k)lpka

Dn(y7x) = Dn(y - X) = Z lﬁk()’)lﬂk(x%

(neP,y,xe Gy, f(0) = / f. Sof =Dy=Ko=0, feL'(Gp)).
Gy,
It is well known that

=/ S (xX)Du(y — x) du(x),
Gy,

anf () /f (y —x)du(x) (neP, yeG,, feL'(G,)).
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It is also well known that

(M, if xel,(0),
DM"(X>_{0 if x¢1,(0),

Su, f(x)=M, | f=Ef(x) (feL'(Gn),neN).

I,(x)

Let 71 be a sequence like m. The relation between the sequence (ri,) and (M,,) is
the same as between sequence (m,) and (M,). The group G, x G, is called a
two-dimensional Vilenkin group. The normalized Haar measure is denoted by g,
just as in the one-dimensional case. It will not cause any misunderstood. In my
opinion, it is always unambiguous the dimension of the set and measure we are
talking about.

The two-dimensional Fourier coefficients, the rectangular partial sums of the
Fourier series, the Dirichlet kernels, the Fejér means, and the Fejér kernels with
respect to the two-dimensional Vilenkin system are defined as

Fom) = [ (5 () ),

1
Sy S ( Z: Z: Sk, ko )y, (v 1)‘//1«2()’2),

Dnlﬂz(yv x) :Dnlm(y - x) = Dnl(yl - xl)Dnz(y2 - x2)

Vl]*l ﬂz*l
= Vi, Wi, 07 )k, (ks (22),
ki=0 k=0
1 n1—1 nz—]
O-n],nzf(ylayz) e — S, f(y y )
M2 =0 k=0

n 1
Km,”z (y7 X) = Knhi’lz (y X Z Z n X)7

(y—(y y) ( )eGmXG)

It is also well known that

Ot 0) = [ Syl =) ),
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fmzmm%

f=(E), ®E,)f(x).
g (X)X Ly, (%2)

SM,”./I;IMZ

2. The theorem

The aim of this paper is to give a partial answer for the two-dimensional case.
We discuss a partial sequence of the sequence of the Fejér means. Namely,
we prove:

Theorem 2.1. Let fe(Llog" L)(Gy x Gyi). Then we have Oy, i, ) =S almost

everywhere, where min{n;,ny}— oo provided that the distance of the indices is
bounded, that is, |ny — ny| <a for some fixed constant o> 0.

In order to prove Theorem 2.1 we need several lemmas. The first one is the so-
called Calderon—Zygmund decomposition Lemma [5] on unbounded Vilenkin
groups in the one-dimensional case (for the proof see e.g. [23,10]). For
zeGy, keN, je{0,...,m; — 1} we use the notation

Ii(z,]) = Iis1 (20, - zk—1,)) = {x€li(z) 1 xx = j}.

Lemma 2.2. Let feL'(G,,), and 2>||f||, >0 arbitrary. Then the function [ can be
decomposed in the following form:

F=h+d G bl <Ch Al <CISIL
=1

B;
suppf/cLJij(zf,l):Jj7 /f,-d,u:O (jeP),
I=0;

m

and for

F=JJ, wF)<c
jepP

Moreover, the sets J; are disjoint (jeP).

The second one is as follows. For an integrable one-variable function f, and
1<A4eN we define the operators L 4, H; 4 in the following way:

1
L,fy::M,/ f(x)—du(x),
1,4 ( ) A—1 e OMA) ( )1*7',4_1(}/*)(7) ( )

Hyaf =|Liaf]
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(feL'(G,),yeG,). The maximal operator H is defined as

H f = 1<stA}p H ,f (feLl(G,,,)).

In 2003 the author proved [13] that the operator Hj is of type (L?, L?) with respect to
any (bounded or not) Vilenkin group.
Let fe L'(G,,) such that

B
[ rau=o, swpr=l] iz =1
Gm j:1

where Ik (z,j) = ir1(20y -y Zk-1,J), 2€Gp, and je{o,a+1,...,}<={0,1, ...,
my —1}. Let y:=| («+ f)/2|. Define the distance of j, ke{0,1,...,my — 1} =
Ly, as

=K if |/ — k<5

p(j,k) = . my
my —|j—k| if \j—k|>7.

In other words, Z,, is considered as a circle. Define the set 6/ in the following way:
If p— o+ 1=m /12, then 6[o, 5] = {0, ...,my — 1},

61 = U Ii(z,)) = Ir(2).

JjE6[o,f
On the other hand, if f— o+ 1<my/12, then 6[x,f] = {jeZm, :p(j,y)<3(f—
a+ 1)},

ol = | I(z.))

J€6[x,p]

It is obvious that u(I)<u(6I)<12u(I). Denote by e, € G, the sequence whose kth
coordinate is 1, and the rest are zeros (keN).
Next, we prove for the operator H;:

Lemma 2.3.

/ Hyf dp<Cl|f]],.
G,,\61

Proof. For xel, and ye |; e Zuy 6l f] Ii(z,j) we give an upper bound for
1 1
L=r(y—x) 1 —=r(y—vex)
and later for the sum of them. The definition of p gives

1 B 1 o
sin(ny"fx") sin(n M) = p(k, xk)
my my
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Since

! ! 4o cot(nz)
- - -4 -
1 —exp(miz) 2 2 "z,

then we have

1 1
‘1 —r(y—x) 1 —=r(y—yex)

cos (n Ak ) cos (n “;)
k my
sin (n y—k,;kxk ) sin (n yjn—;')
sin (n Y"m—:/>
sin (n y—"’;kx" ) sin (n “"’;T;*)
f—o+1)/my

‘sin (n 2 "V;:”‘) sin (n 2 j};')
(f—o+ )my

Pk Xi)p(Vie: 7)

(f—o+ )my

P>(ve,y)

Do =

Do =

<C

<C

The last inequality is implied by the definition of p, yré¢6[x, ], and
Pk, k)= p (i, 7) — (B— o+ 1) =3 p(yx, 7). Consequently, we have

1 1 1

M 0 ey ’1 —re(y—x) 1 —re(y —yex)

Vi ¢6[o.pf]

p—a+1

pe 3oy PP OR7)

In the sequel we consider

1

== du(x)|,

Hiaf(y) = ‘MAl/ S(x)
Lt 0\ (y)

where y e G,,\61. This means, that either there exists an i<k — 1, such that y;#z;, or

YO = Z0y eory Vk—1 = Zk—1, and yi ¢ 6[x, f].
The case A>k + 1. In this case

Lici(WN4(y) e La—1 (o, -+, Ya—2) ey 1 (Vo -, Vi)

If there exists a i<k — 1, such that y;#z;, then the sets Ii(zo, ...,zx—1)D1, and
L1 (vos -, yx) are disjoint. Consequently, H; 4 f(y) = 0.
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On the other hand, if yo = zg, ..., yx—1 = zxk—1, and yx ¢6[o, f], then the intervals

Lii(vo, -y vk) = ki (20, -y 2k1, Y1), and 1 = Uf;z Ii1 (20, ..., zk—1,j) are disjoint.
Anyway, we have H; 4 f(y) = 0.
The case A<k + 1. Thatis, 4 — 1<k —1.1If

IA(}’Ov ~~ayA—2,X,4_1)(‘\[;£07
then the condition yo = Zo, ..., 42 = 242, X4-1 = z4-1 must be fulfilled. It follows

that ICIk(Zo, ...,Zkfl)CIA(yo, ...,yA,g,xA,l). Thus, IA(yO, ...7yA,27xA,1)mI =1.
Consequently, the function r4_;(y — x) is constant as x ranges over /. This gives

Hiaf(y) ’MAI 1f(x) = VAi(y 9 du(x)
1
a ' Mz L —rg1(y —z4-1€4-1) /If(x) u(x)| = 0.

Consequently, H; 4 f(y) may differ from zero only in the case 4 = k + 1. It follows

|

fl(y)\u(y)f(x) mdﬂ(X) .

mﬂw—P@[

Recall that ye G,,\6I. Moreover, if H, 4f(y)#0, then yo = zo, ..., ¥k—1 = zx—1, and
Vi ¢6[o, f]. These assumptions give

/'|Mﬂmmw>
G,\61
1
- Mierr | Z

k:0 ..... mkfl

Vi 6[p]
1 1
= Mk f X (
Mk'H Vie=0,..., my—1 1 ( ) 1 Vk(y o X)
Vi #6[0,f]

1
=y - vek))du(x)

1
s[vmmmm;; 3

2e=0, 1
Vi ¢6[of]

<gﬁy@mmm:avm O

L=y —x) 1—re(y—yex)

Since the operator H; is of type (L?, L?) [13], then by standard argument with the
application of Lemma 2.2 it follows that the operator H is of weak type (L', L'). In
the book of Bennett and Sharpley [4, pp. 243-249] one can find that an operator of
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this kind satisfies the following inequality:
LS < Cl A L1ogr £+ € (1)

In other words,
/G |H, [ dHSC/G |f (%) log™ (| f(x)]) du(x) + C.

This inequality plays a prominent role in the proof of the forthcoming lemma, which
is the very base of the proof of Theorem 2.1. That is, let function f satisfy (almost)
the same properties as in Lemma 2.3, the only difference is that we do not suppose
that f has zero meanvalue. That is, f is integrable, and

B
suppf < U Li(z,j) =: 1.

J=a

Lemma 2.4.

/MHlfdm CUL L + 1/ s g 1+ (D).

Proof. The shift invariancy of the Haar measure implies that we may assume for the
interval I that z = 0.

Similarly, we also may suppose that 6[o, f] = [0, ]. This means that the union of
the intervals (J; ¢, 5 2k(0,/) is shifted to the union of intervals ;.o 5 Zx(0./)-
Let ye6l = Uje[o,a] I (0,)). For A<k we have x4_1 #y -1 if xe 41 (¥)\L4(y) (see
the definition of H; 4 f(»)). This means that

(Lt ()) T =0,
and consequently H, 4 f(y) = 0.
That is, 4>k + 1 may be supposed. Consequently,

H f= sup Hiaf<Hijnf+ sup Hiaf = Hinf+H f.
Akt Azk+2

Define the Vilenkin group Gy, as follows:

o
G, =2Zsx X Zpy,.
n=k+1
The normalized Haar measure on G, is denoted by u°, m§ = o, m} = my1, .... For

m
a function f : G,, » C we define the function g: G°, — C in the following way:

O
m

g(x) =f(x) (x€Gu,xr€Zs<Zp,, and xp, ...xx_; are fixed).

Then by inequality (1) we have for H; defined on L'(G3,) in analogous way as H|
that

/qudu<C/ )| log* (Jg(x)]) dy(x) + C.
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That is, in other words:

Mty /
O UL 1(0.1) A (L GNa)

5mk+1 e My_2

S ()

M4
0 B sup
U,:0 1k(0, ) A=k+2

1

x—
1—VA,1(y—X)

My ) o
<t [ ol ()t + €

=0

du(x)|du(y)

This implies (recall that f is zero outside 1 = ;. , 5 1 (0./))

1
- - 4 d
/Ufozkm,j) Sap| M l/zAl<y>\1,4<y>f(X)1_“—l(y - KO
N Co
<cC / £ (6)log (1 ()] () + 5

This follows the inequality
[ HiF <O s o+ D).

Finally, it is left to prove the same for Hj ;1 f. We use a similar method like in the
case of HY.
By elementary calculus we have for 0#|u|<n/2 that
Aul _Jul

1
cot(u) — " <?<7.

Suppose that 20 <my. Since 6= |yx — x| #0 for yx €[0, 6] and xi €[x, f] =0, d], then
we have

<n|J’k — Xk
46

cot(n’yk - xk) o 2

26 Vi — Xk)

and consequently,

<

my ny t( yk—xk)

(e — Xi) 20 20

cot (n 2k xk) - " +
my; (Vi — Xx)

e = il e mlyk — ]

S 2my 20 40

My
<C—.
Cé
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We give an upper bound for the integral

/mﬁdw
6/
1 .
S [0 S ) dux)|du)
Uj:() (0, /) Urke[l_ﬁ] ‘{yk}lk.l(o ,,,,, 0,x1)

1/ mk/
2y a2 )
2, w0, 20 Uy oo 10 030)

xcot( yk )d,u ‘d,u

k
v / 25/ |f (%) dp(x) du(y)
U!(ke7ﬁ (Jk}IAH(O 2,0,x%)

=: Hyjp11+ Hl,k+1,2 + Higors.

It is easy to check the first and the third addend:

5

A\ Mict1 :

Hijei +H1ﬁk+1,3<Cﬂ< U 11«(()7J)>—(;r AL = ClAL-
Jj=0

Since —pmmu o7 = 1/2 +1/2 cot(n(yk — xi)/(20)), then we have to investi-
gate

My | 1
; S () ey du(x)|dp(y).
/U;O 1(0,) 20 UYkE[x-ﬁ]\{yk} ) - exp(27” yk25 A)

The distance of this integral and Hj .1, is bounded by C|| f]|;.
By (1) for the Vilenkin group G/,

G)r = Zz() X X 1Zmn,

m

n=k+
we have
M, M 1
2’(5“ ) 2"5“ / : f(x) —%dﬂ(x) du(y)
UL, 4.0 Uros, e (0,0) 1 —exp (2151.12% )
M,
<c=E |/ (x)[log™ (£ (x)]) du(x) + C.

20 U, 10.)
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This gives

My 1
: f(x) du(x)|du(y)
/U,'-’o 100|208 U, g B0y = exp(2m g

<C(If L 1ogr £ + (1))

Consequently, we have [, H s/ di< C(|f 1l 1og' 1 + 11l + (1))

What can be said for Hj .1 f if m;<20? Recall the definition of 6[a, ] before
Lemma 2.3, and the definition of ¢ at the beginning of the proof of this lemma. That
is, if 20<my is not fulfilled, then 6[x, ] =[0,0] = [0,m; — 1]. The method is
the same, except the point that we do not interchange exp(2mi(yr — xk)/my)
by exp(2mi(yx — xx)/(20)), that is we take G, =Z, X X2, Z,, not
Zys X X2 L, O
Remark 2.5. If the integral of function f equals with zero, then by Lemmas 2.3 and
2.4 we have [|Ey £l < CULA N+ 1/l g 1 +1(D):

In the sequel we turn our attention to the two-dimensional case. Define the two-
dimensional operators L; ;,H;  for integrable functions in the following way.

Liasf(0'y) = (Lia®Lig)f (v, ),
Hi a5/ = |Liiazf],

Hi1f= sup Hiiasf
AB|A—B|<x

for some fixed a>0. We discuss the two-dimensional operator H;; with respect to
functions supported by squares. Let f be an integrable two-parameter function on
the group G,, x G, and

/fxxdu /fxx )0

for all x>e G,; and x! € G,,. Let the support of f be included in the square below:

ﬁl BZ
suppf= | L(z'j") x | k(. )x =1'xP =1
jl:“l j2:“2

Use the notation 61 := 6I' x 6I°>. We prove the two-dimensional version of
Lemma 2.3.

Lemma 2.6.

/’ Hy 1 £ <Col([f 1]y + 1A oge 2+ 1(D))-
G ¥ Grft\6l
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Proof. The set G,, x G,;\61 is the disjoint union of the sets (G,,\6') x (G;\61°) =:
Ji, 61" x (G;\61%) =: J,, and (G,,\6I') x 61> =: J;. We discuss the integrals of the
function Hj ; f on these sets one by one. First on Ji, then on J,. Since the case J3 is
similar like case J> (interchanging the variables), then it is left to the reader. In order
to have the necessary bound for the integral on J; we apply the method of
Lemma 2.3.

That is, let (y',?)eJ;. Consequently, y'¢6I', and y*>¢61>. This implies that
(Li4 ®L1,B)f(y1,y2) may be different from zero only in the case, when 4 = k + 1,
and B =k + 1. Besides, y' e I;(z"),y* €I} (%), and y' ¢6[a', B'], y*¢6[0?, f*]. These
assumptions give

Hi1 /(007 = Lk SO, 07)]

~ 1
— |\ M.M P2y -
‘ S lepf(x ) L—re(yt = x1)
1
d 1 2
X 1 _ rk(yz _xz) 'Ll,(x 7x )

~ 1 1
= | MM, xl,x2 ( — )
‘ A I‘><12f( ) 1= =x)  1T=r(' —yler)

1 1
_ d 1 2
. (1 e Sl gy e vzew) Hexs )

ﬁl—a1+1ﬁ2—“2+1 ~ / 1 2 1 .2
Mier Miesr |f (x5, 20 dp(x, x7).
2oL P20Y) T e

X

So,

Bl =o' + 15—+ 1

Mii My || 1]
PPk p203.7%) :

Hi, /(') <C

At this situation we apply Lemma 2.3, or more exactly, the method of the proof, that

is, that fact that Zykfma,ﬁj] pz(yi’,y/)S Cﬂ-’?lfﬂ (7 =1,2). This gives the inequality:

’ Hy /(0% du(y',»*) < C||f]];-

Let now, yeJy, that is, y' €61',)? ¢ 612, This implies that (L 4 ® Ly )/ (', »*) may
be different from zero only in the case, when B=k+1and so k+ 1 —a<A<k +
1 + o Besides, y? e (z%), and y7 ¢ 6[o%, f*]. This gives

Ltk SO 07
1

y 1 .2 1 2
Mk /12 Ll,Af<y , X )(1 — Vk(yz _xz) - 1 — rk(y2 — ’))2€k)>d'u(x )

M1 (f* — o + 1
k+:f)(2iy2,;) )/12 [Liaf O x| du().

<C
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This gives

/ L1tk SO ) du(y', y?)
61'%(G,\6I?)

1 M (PP =02 +1)
61 Mk Pz(y;%ﬂ/z)

<

[t 6 ) o) duty')

2 gele )

<c [ [ st D)l dueedn)
= [ [ 1 f 6 )
Apply Lemma 2.4 for each fixed x?. This gives
[ ] a0 duts) )
12 JeI!
< [ ([ 1re ot aute)
2 \Jn

+/ /(e x)llog™ (1 (x',2%)]) d(x") + u(11)>du(x2)
I!

SCUA A+ ANz r0gr 2+ w(T))-

Consequently,
A=k+1+a
/|H1,1f(y‘7y2)|dﬂ(y‘,y2)< > /ILl,l,A,k+1f(y1,y2)|du(y‘,yz)
2 A=k+1-o J2

< Co[[/ 1l + 1L 10gr 2 + 1(1))-
The proof of Lemma 2.6 is complete. [

Recall the notation of Lemma 2.6, and for jeN let g; : G,, x G, —C be integrable
with the property

() = i A1 ) [ A0 duteh),
J
where f,f; : G, x G, —C are also integrable, and

suppficl; =1} x I, / fidu=0.
GmXGn’l

Moreover, the two-dimensional rectangles /; are disjoint, and f = Z/e,\,j}7 g=
Z_/eN g, I = UjeN 1.
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Lemma 2.7.

#Hiap9>2) <~ (Hflh ANz 10g £ + 1))
for any 1.>0 and A, BeN.

Proof. The proof is quite simple and based on the fact that the one-dimensional
operator H; (and so H 4) is of weak type (1, 1), and on the inequality of Lemma 2.3.
Fix an y? € G,;. Then the one-dimensional Haar measure of the set

{y1 eGy: HI.I,A,Bg(ylvyz) >}

is bounded by
—/ L sg (0 3] du(y).

This follows from the fact that H; 4 is of weak type (1,1). Consequently, the two-
dimensional measure

C
H(Hy 1 ang> 1)< S / / Ly sg( %) du(y) du(y?)

S L by 0O 07 dut) dits),
/GN m m
where gj(x fllﬁ (¢',x%) du(t"). On the other hand,
Lisgi() = / Lisf( ) duld),

that is, the operator L g with respect to the second variable of f;, and the integral on
the set Ij1 with respect to the first variable are interchangeable. Thus, by Lemmas 2.3
and 2.4 we have

pu(Hy, 1ABQ>/1

/ IL1.8G0°)| du(y?)

jGN

<SSO gt + 5 [ 100607 dut)

JjeN i 51/,2

C X
<< Z(mvnl + [, 1man du(tl)du(y2)>

jeN
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Z(Iflh // Lia fi(d ) du(y?) du(t ))

¢
A

C

Al + If;(tlaxz)ldu(xz)

Grﬁ

>

[, log” (fj(fl,xz)l)dﬂ(xz)+#(1j2))d#(11))

_|_
\

Q

" Z (LAl A Al L rogs 2 + 1))

jeN

>

| a

~ UM+ M roge £+ 1))

~

This completes the proof of this lemma. [

Next, we need the two-dimensional version of Lemma 2.2.

Lemma 2.8. Let fe L' (G,, x G), and 1> || f|, >0 arbitrary. Then the function f can
be decomposed in the following form:

f=h+>_ % hlle<Cih 1AL <Clf,
j=1

b K

suppfic | Iy (2,0 x | I (.0 =1 < 1P = U, / fidu=0
1:“ = sz Gux G
(jeP)
and for
c /1L
F= UJ/, WF)<C P
jeP

Moreover, the sets J; (we can call them squares) are disjoint (jeP).

We prove that the maximal operator Hj | is of weak type (Llog" L, L) “almost”,
or more exactly we prove:

Lemma 2.9. For all integrable function f e Llog" L(Gy, x Gy;) we have
C
(H11f>/1)< (1Al + 1l rogr ) + ?a2||f||1

for any 1>0.
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Proof. Apply the two-dimensional Calderon—Zygmund decomposition lemma, that
is, Lemma 2.8.

_ - “1g “172

f=tf+ Z(f iy [ gy /f)

J

DRI WS SR N

J=1 J

By the sublinearity of the operator H; | we have
pw(Hy 1 f>2)

8

Jj=

o)) oo (55))

=: Vi + V2 +V3+Vvqg+Vs.

<M(H171ﬁ)>i/2) + ,u(6F) —‘r,ll(ﬁf\ <H1,1 ( ] ];’) >i/6>>
1
=1

Since the one-dimensional operator H; is of type (L?,L?), then so does the two-
dimensional version H, ;. That is,

C , C , C C
Vl<?||H1,1f0||2<?||f0H2<7||f0||1<7||f||1

as it follows from Lemma 2.8. This lemma also implies v2<$ || f]];.
Next, we discuss vy4. Its investigation based on Lemma 2.7.

V4<,u<ﬁm G BLAJH<H1,1.A,B<i g}) >i/6>>

A=1 B=A—u j=1
0 B=A+o - o0

<> Y ,u<6Fm (H,J’A,B (Z g}) >l/6>>.
A=1 B=A—u J=1

In order to get a bound for v4 we prove that there are only at most & number of k;’s
such that Hj ; 4, Bg} differs from zero on the complementer set of 6F. In the proof of
Lemma 2.3 one can find that for any B<k; the function
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on every y = (y',)?)€ G, x Gj; because the integral of the function [, f;(¢',.) du(r")

is zero. That is, B> k; can be supposed. Since for y¢6F we have y¢6J; = 6[_/.1 X 61_/27
then either y*¢ 617, or y' ¢61.
In the first case, also in the proof of Lemma 2.3 one can find that

Lia| g, 50000 |0

. 1

may be different from zero only in the case B — 1 = k;. That is, we have only one k;
such that H1,1,A,3g} differs from zero.

See the second case, that is, y'¢6I'. This follows y'¢I!, that is,

1
Y Uf;a} Ii,(z17,1), and consequently, Dy, (y' — x') =0 for x'el!, and 4>k; +

1. The definition of L; 4 gives that LL’Ag} (y) = 0. This means, that A<k;<B is
fulfilled. Since the distance between 4 and B is less than o, then we proved that there
are only at most o number of k;’s such that HI,I,A7Bg]1 differs from zero on the

complementer set of 6F.
So, by the help of Lemma 2.7 we may continue the investigation of vy.

(el

HllAB Z gll >)v/6

{j:A<kj<A+a}

B:

N
VA
Mg

hNy
Il

i
h;

\ |
+
<

Il
M)z

N
I
Uo
sz

A+

K

A
~l 0
Mg

EN
I
>
Il

(LA + 1l L 10gr 2+ 1(7))
A—a {j: A<kj<A+a}

(LA + 1A L r0gs 2+ 1(T1))

{1 A<kj<A+o}

- (LN A+ 1 1 rogr 1+ 1OF))

(LM 1 Mg 2) + pazllf'lll-

)

A
N
0

N
\JIQ\JIQ >~ 0

The investigate vs is the same procedure as v4, that is why, it is left to the reader.
The rest is to find an appropriate bound for v3. Basically, the proof of nothing else
but the application of Lemma 2.6. Therefore,

o () ) o (5
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% /Hllf du
C o0
= D M+ 1 g 1+ ).

=
By elementary calculus we can prove the inequality
Ju+ vllog™ (Ju + vl) <|ullog™ (u]) + [v]log™ (|o]) + [ul + [v]

for any u,veC complex numbers. This implies |lg+ ||, 100 2 <91 100 £ T
121l 10g+ 2 + Ilglly + [IA]]; for every integrable function g, /. Consequently,

1AL 10g" £ <! SillL10g" £+ ||(1,!|‘Llog+L+ ||9,2||Llog+L+2(||ﬁ‘H1 + ngl||1 + ||9,2H1)

On the other hand,
||g,||1\// I (x /Ift ) du(t') du(x") du(®) = (| £

The function |u|log™ (|u|) is convex on [0, + o). This implies
19} 10 —// (1)) [ ) dute)

x log* (ul(ll) /l.ﬁ(tlvxz) dp(t")

< L g 151 ) e

)dmxl) dp()

= ||fj"||LlogJr L

That is, since the support of the functions f; are disjoint, then

8

(LA + A L 10gr 2 + 1(I)))

S
N

IQ\JIG >0
T

A1+ 1 g ) + fu<F>

7 U+ 1z veg ) + ?IIfIIr

This completes the proof of Lemma 2.9. [

Define the two-dimensional operators F} (i = 1,2) for integrable functions in the
following way:

Flsf(0' ) = (EY@Lip)f(0",)), Fipf(' ") = (LiaQERf(y', 1),
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Fif= sup [|Fj,fl,

A,B,|A-B|<u

where i = 1,2. We prove some kind of weak boundedness of the operators F.

Lemma 2.10. u(Fif >2)<$ (@[ f1ly + 1 /1L 1ogr ) + S 1/1l1-

Proof. Since the cases i = 1 and 2 are quite similar, we discuss the case i = 1, only.
Apply the notation of the proof of Lemma 2.9. That is,

o0 o0 o0
WS W RS o)
=1 =1 =1

It is well known that the one-dimensional maximal operator 4* := sup, |E 4| is of
weak type (1, 1) also on unbounded Vilenkin groups. Apply this fact, and Remark
2.5. We recall that for all fixed x' e/ the integral [, f/'(x',x*) du(x*) is zero.

(%)
(o o(57))) -4
1 Lol
S%Z [ su |I;Bf,< LA () du(x')

C 0
<53 [ [ swp ILuaf (e ) dnty?) dnte)

([ et anee)

du(y*) du(x")

m

=[G s A ) + w2 )t
C <.
7 Z ||];/||1 + Hﬁ,HLlongL +ﬂ(‘]]))
j=1
At the end of the proof of Lemma 2.9 one can find the inequalities
||ﬁ/”Llog+ LS ||fjHLlog+ LT ||g_}||Llog+ LT ||§1_,2||Llog+ L
+ 2(1 11y + gj 11 + [lg711)

CUIAIL + Az 10g £)-
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Consequently, the two-dimensional Calderon—Zygmund lemma, that is, Lemma 2.8
gives

( (Zf/>>ﬂ> S+ 1o 1)+ ;%nfnl. 2)

Fix an 4, Be N. The one-dimensional operator H; is of weak type (1, 1), and the one-
dimensional operator E4 is of type (L', L"). This gives

w((Ey®Lip)f|>2) = u(|L1s(Ey f)]>2)
<S L L Bsot e aoh <3Sm0

In the sequel we apply the method used in the proof of Lemma 2.9 at the point we
got bound for v4. That is, we prove that there are only at most o number of k;’s such

that F| 4 qu differs from zero on the complementer set of 6F.
In the proof of Lemma 2.3 one can find that for any B<k; the function

Lipg;(x',y*) =Lip <u1 (1)1 (xh) ,,f(tl’ ) du(11)> ()

— i I ()L / LS du) |67 =0
! U[iyl 1"’/'<Z]'/’l)

on every y = (y',)?) € G,y X Gy because the integral of the function [, (¢, .) du(s")
J

(the support of which is a subset of Ijz) is zero. That is, B> k; can be supposed. Since
for y¢6F we have y¢6J; = 61! x 617, then either y>¢ 617, or y' ¢61}.
In the first case, also in the proof of Lemma 2.3 one can find that

1 1 2
Lis /U/ﬁ; o ) |0

may be different from zero only in the case B — 1 = k;. That is, we have only one j
such that H1,1’A,Bg} differs from zero.

See the second case, that is, y'¢6I'. This follows y'¢I', that is,

1 .
y'e¢ Uial Ii,(z"7,1), and consequently
7
ELQ} o' X)) = MA/ g}(tl,xz) du(t')y =0
ALy

for A>k;. In this case the intersection of Ij1 and I4(y') would be the empty set.
Anyhow, 4 <k;<B can be supposed.
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By the same method, we have that F] 4 Bg/ may be different from zero on the
complementer set of 6/ only in the case B — 1<k;<A. We get this as follows:

B0 ) =M [ 0 A6 ) dus)
i [aryivy '

i e [ ) ) ) =0
NIy

as if I! =14(y) (since the integral of J; is zero), and also in the case when these two
intervals are disjoint. That is, Ij1 > 1,4(y) must be fulfilled (if the integral is not zero),
and consequently k; < A. Suppose this. On the other hand, in this case, if y'é¢ Ij‘7 then

0 after all. So, y' e[} is also can be supposed. Therefore, y*¢ I7 (recall

J
l y2)r) Ifkng— 2, then

that y¢6F). So, what can be said on Ll,B!}]2 (x

Lagi (' 3?) = Mot WD) [ R dule)
151 ()\5(»?) I

du(x*) =0

X
1 —rp_1(p* — x?)
because k;<B—2, and y*¢I? give that the intersection of the intervals I? and

Ig(y3, ... ¥% 5, X% ;) is empty for all x3 | €Z;, . That is, the only case we are
interested (when F; g7 may be different from zero on the complementer set of 6F)

is B—1<k<A.
Now, we follow the proof of Lemma 2.9, and apply inequality (3).

M<6Fﬂ (Fi (i (g} +¢7) >7~>>>
=

5 8 ofor(onn(§ o0

J

1 B=A-
0 A+o .
< pl6Fn [ (EY®Lp)
A=1 B=A—o
x (9] +97)>%

{j : min{4,B}-1<k;<max{4,B}}

C o0
<Zad> X g+ gl

A=1 {j:A—a—1<kj<A+a}

canin
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This inequality, (2), the facts that the two-dimensional operator F} is of type

(L*, L?), and u(6F)< C||f]|,/4 (see Lemma 2.8) by the (already) standard argument
give

C C
u(FLf>2) <5 @I+ 1N g )+ =5l
This ends the proof of Lemma 2.10. O

For any 1<jeN define the one-dimensional operator H; in the following way

Hif(y) = sup [Liaf(y)|

j<AeN

= sup MA,]-/ f(x)
| < . . )
j<AeN o4t Li(00, e VA—je 15Xy e sV a—1)

1

X —————dx
1 —r4(y—x)

)

where ye G,,. In [13] the author proved the existence of an absolute constant C>0
such that for all 1<jeN, feL'(G,), and 1>0

.2 o
J
wH; f> 1)< C—5
Hereinafter, we discuss the two-dimensional version of this operator and inequality.
Let

H, /') = sup  |[(Lja ®Lyu) (07
ji<AreN,i=12,
|A1—A2‘<C{

for any f e L' (G, x Gg), j1,j2€P and y = (y',)*)€G,, x Gji. The operator Hj, ;, is
the generalization of the operator H; ; we discussed in Lemma 2.6 and in Lemma 2.9.
We prove

Lemma 2.11. For all integrable function f € Llog* L(G,, x G;) we have

ih (€, ¢,
wH;, > <3555\ 7 UL+ A roge 1) + 2zl (4)
for any A>0, ji,j,eP.

Proof. Basically, the proof is a kind of modification of the one-dimensional case
made up by the author [13]. For j; = 1,/, = 1 the proof is nothing else but Lemma
2.9. The proof applies this lemma for a modified two-dimensional Vilenkin group.
We apply a finite permutation for the coordinate groups of the Vilenkin group G,
and G,; such that for all 4;>;, A;eN the 4; — jith coordinate group and the 4; — 1st
coordinate group will be adjacent (i =1,2). Then we use Lemma 2.9 for the
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modified group.

Hjl-jzf(yl7y2)< Z Z sup |(L]'1‘A1 ®Lj2-,/12)f(ylvy2)|

k=0 ko—0  JisAieN

A;=k; mod j;
i=12,| A1 — As] <2
h-1 p-l
_. k17k2
_ZZ Jljzf(y y)
k1=0 k=0

We prove the existence of an absolute constant C>0 such that for all
2>0,feL (G, x Gz), andj[,k,- (i = 1,2) the inequality

(P4 W g )+ 320111 (5)

holds. This inequality immediately gives

w(Hj,, 5o f> 1)

u(HY k’f>})

J15J2

k1=0 k=0
Ji—1 p—1
<>y w2
117/2 L]
fi=0 J= J12

ik . C
<L (S + Ul )+ 2111 )
and this completes the proof of the lemma. Let

ki,k2,N 1,2\ . 1 .2
Hfllyjzz SOy ) = sup |(Lj1,A1®sz~,A2)f(y )
Ji<Ai < Nji+k;
Ai=k; mod j;
=12, 4, —As] <2

Since ijll ;‘22 /f is monotone increasing as N gets larger, then by measure theory if we

k k? N . . .
prove that the operators H; ' f are of weak type (5), uniformly in N (it means that

the constant C does not depend on N, j, k), then Hjlﬁl”]/-‘; is also of weak type (5). This
would complete the proof of the lemma. That is, we have to prove inequality (5) for

operators ijl‘ j‘;

Recall that the Vilenkin group G, is the complete direct product of its coordinate
groups Z,,, that is, G,, = X2 Z,,, and G;; = x 2, Z;;. We define another pair of
Vilenkin groups. Their coordinate groups will be the same, but with certain
rearrangement. Let the function 0,: N—N be defined in the following way. If

n=k; + Nj;, or n#k;, k; — 1 mod j;, then
0:(n) =n
and
Oi(ki + i) = ki + (1 + 1)ji = 1, Oi(ki + (14 1)j; — 1) = ki + Ij;



G. Gdt | Journal of Approximation Theory 128 (2004) 69-99 95

for all /<N,/eN, and for i = 1,2. Then define the Vilenkin groups G/*1 G,-,’f’kz as

K 0
G = x Z
m =0

ks 8 .
n1()l(1)7 Gyﬁ - 150 Zﬂ‘l()z(]) .

We give a measure preserving bijection between the two pairs of Vilenkin groups. We
denote it by 8 = (91, %), or more precisely (if it is needed) by ¥ 1 = (91, 1.k, H2, jo ) -
It will not cause any confusion. That is,

_ . ji .k Ja:ka
9= Uik - Gm X G,ﬁ—)G},{,ll I'x G,ﬁ

and let the nth coordinate of the sequence 9 (x!) be xél(n), the nth coordinate of the

sequence 9(x*) be xj ). Thatis, (91, 4, (x"), 92, 5 (¥?)) € G4 x G2* Briefly,
(9(x), = xb(n) (neN, i=1,2).

Consequently, we have a finite permutation of the coordinates. This is very
important for us, since when we discuss the operator H; ; on the two-dimensional
Vilenkin group G/ x G,-j;f’kz, then we can apply the result given (H;; is of weak
type (4)) for the operator Hfl‘j‘;N
Denote by m” the sequence for which m?l = my, (1), and by m? the sequence for

on the Vilenkin group G, x Gj.

which m?z = 1ilg, (1) Introduce the notation r?" =719, (leN,i=1,2). Recall that
A; = k;modj; (i =1,2). Then we have

1 1

= xl

=g (0 = x') =1 —exp| 2m 24— A
”nA],jl

9 (! — i (x!
e (2m 10—l >A,1>

my
=1/ (%) - ("))

Similarly, 1 — r4,—, (07 = x%) = 1 = % _ (82(0%) — $2(x?)).
Moreover, denote by M%, M% the sequence of the generalized powers with
respect to the sequence m” and m%. This gives

0 _ 0 0,
My =my..my ,
=Mooy ..My, —ji 1My, —j+1...My, 1

my...my, —1

my,—j
Mg, = MA —ji 41 - M4, 1
=My,

my,—j

=My, ;Mg —jg1...mg, 1.
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This gives My, _;, <MY _ /27", and similarly M, ;,< M7 _,/2”7". By the above
written we get

My, -, MAz—.iz/

1
_ IAI(}()"'"'-yAl —j -1 Al e )Al )

X /
U 2 s 1y 03,0

2 2
2 L2 Vg1 ¥y iy ity 1)
Ay=jp " " Ar=hp

X f(xl,xz) ! !

1 - rAl_fl(yl - xl) 1 - rAz—jz(y2 _XZ)
1
S 1212 ST Hu (3101, 920),

where the function 7 is defined on G251 x G2* by f(x!',x?) = f0(91(x!), $2(x?))

m

for all xe G, x G,;. The definition of Hf AV [ gives

JisJ2
ki,ka,N
Hjll.'j; f(y J’)

dp(®) d(x')

1 1 )
S0 12]2 1 l,lf (91()}])"92()/2))~
Consequently, by Lemma 2.9 we have
. yykijo, N ,
1€ Gy x Gyi: Hi"2 7 f(y)>4)
<u(9(y) €GN x G2 Hyy f1(9(y)) > 2/72)
¢ C
< (foz(ﬂfgﬂl 1N g )+ m 2|f6|1>

1 /C C
<z (G RN+ Ul )+ 011 ).

That is, the proof of Lemma 2.11 is complete. [

Define the two-dimensional operators F]’ (i=1,2,jeN) for integrable functions
in the following way:

Fl /(') = (EYy®Lis)f (")), Fipf(0'0") = (Lia®ENF(',)7),

F}f = sup |F;,A,Bf|v
A,B|A—B|<a

where i = 1,2, jeN. In the same way as we proved Lemma 2.11 by the application
of Lemma 2.9, from Lemma 2.10 we get the proof of the following lemma. [

Lemma 2.12. u(F} /> 2) <SG f 1l + 11/11 210 )+ 2lA11)-

Finally, by Lemmas 2.11 and 2.12 we prove the main theorem of this paper, that is
Theorem 2.1.



G. Gdt | Journal of Approximation Theory 128 (2004) 69-99 97

Proof of Theorem 2.1. In the paper of the author [13, Lemma 2.6] one can
find the following formula for the Fejér kernels. Let A>¢, t, AeN, ze,(0)\;11(0).

Then

0 if z —Z,€,¢IA(0),
KMA (Z) = M, :
71 _ rl(z) if z Z[e[eIA(O).

Since in the one- dimensional case for zely(0) we have Ky, (z) = Ky, (0) =

MA Z,]CMA e = M" , then we have for a f: G,, > C integrable function

o, ) = /G £ VK, (7 — x) dp(x)

[ K- X dax) + Y / O =)
=0 YL\ (y

L4(y)
My—1
= A2 S (x) du(x)
Li(y)
A-1
1

+ M, Jx) —F——dulx).

=0 U.\‘;#,Vr Li(Y0s-e o Via1:X0 Vst -V a-1) 1 - rf(y - X)

This immediately gives for the two-dimensional operator o My, M,

A2‘<OC

(00, a1, O 52

2 0
< sup (B}, ®EL) Z Z F/o' %)
[A1—Az| <o i=1 =1
o0 o0
+ > H 00
Ji=l =1
2 0 0 )

- ;JFZ ZFlfy y +Z ZHh]ny y

i=1 j=1 Ji=1 p=1

Define the maximal operator

o.f= sup |o < f
o Ay AreN | MAI,MA2 |
‘AI—A2‘<C{
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So, by Lemmas 2.12 and 2.11 we have

oy f>2)
2 0 0 0
<u(f:>2)3) +u<2 ZF}f>i/3> +M<Z DR ,2f>)»/3>
i=1 j=1 Ji=1 p=1
w(fy>2/3)+> Z“( F f 4]23>+Z Zu( ,,,,zf>4223)
=l j=1 A=l =1
2 0 Cj3 D j4
W=+ Y 3 LG Ml 0+ 50111
1

i=1 j=1

8

Q

0 3 22 4 -4
JiJ J> Cjij
+ Z Z 2,13,2 ; (11 + 1L 0gr ) + /11220(2|f|])

Ji=1 =1
. 1
Su(f1>i/3)+Cfxzz(Hf|h+||f||L10g+L)+C0<2}—2Hf||1~
It is well known that the unconditional maximal operator f*:=

Sup 4, 4,en|(EYy, ® EZ))f| is of weak type (Llog"™ L, 1), that is, u(f*> 1)< C(||f|], +
/1L 10g* )/ 4. One can find a proof for instance in [29]. Hence

02> 2) < C2 (G + 1 g )+ 5311 )

Finally, let the integrable function f belong to Llog" L(G,, x Gy;), and £>0. Since
the set of two-dimensional Vilenkin polynomials is dense in this space we get by
standard argument that

u| timsup [0y, g, f—f1>e| =0,
AA2—>OC
‘Al A7‘<0(

i.e. that limsup 4, 4,-« |0MA| MAzf fl=0 ae. The proof of Theorem 2.1 is
‘A] A2\<<x
complete. [
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